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What is Reservoir Computing
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Nonlinear dynamical systems

Natural systems

| Global Average Temperature 1850 - 2023

- Source: berkeleyearth.org

with ocean data adapted from the UK Hadley Centre
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Engineering systems
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Code by ChatGPT
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Social systems

@ S&P 500 historical chart

Source: www.macrotrends.net
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Biological systems
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Recurrent Neural Network (RNN)

Feed-Forward Network Recurrent Neural Network

® o6 00

* For static input * For dynamic input
» Perceptrons are used once for each » Perceptrons are used repeatedly
input during the given input

* Output of nodes at ‘n-1'th series
becomes input of ‘n’th series
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Disadvantages of RNN

Source: https://iq.opengenus.org/disadvantages-of-rnn/

 Vanishing or exploding gradient problem

« Slow and complex training procedure
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Reservoir computing

Ref: Lukosevicius, Mantas, and Herbert Jaeger.
Computer Science Review 3, no. 3, 127-489.

Reservoir

—

Trained
connection

Input Output

adout
nodes

* Reservoir: a set of randomly created, fixed recurrent neural network

« ltis passively excited by the input signal and
maintains nonlinear transformation of the input history in its state.

* The desired output signal is generated
as a linear combination of the readout nodes of the reservoir

driven by the input signal
« The linear combination is obtained by linear regression,
using a teacher signal as a target
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UAT for dynamical nonlinear systems

True Output vs RNN Prediction Code by ChatGPT
1.0 4 —— True Output
——=- RNN Prediction =
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0.4 7 Hidden nodes 1‘|1| ]\
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Mackey-Glass System
dx(t) x(t—1) .
0.0 1 dat " 1+x(t—1)" rx(t)
0 25 50 75 100 125
. Time St
=== RNN Computational Costs ==="""""
Training time: 3.83 seconds
Inference time: 0.2095 seconds k
Memory used: 63.27 MB # of connections to train: 2651
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UAT for dynamical nonlinear systems

True Output vs Reservoir Computing Prediction

Code by ChatGPT

1.0 4 —— True Output
——=- Reservoir Prediction
0.8 1
0.6 -
1B
=
p
0.4 -
0.2 1
Mackey-Glass System
dx(t) x(t — 1) 0
— —YXx
a0 | dt 1+x(t—1)"

i.
1
\

1] 25 5;3 75
=== RC Computational Costs ===
Training time: 0.02 seconds
Inference time: 0.0015 seconds
Memory used: 5.57 MB
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# of readout nodes: 100
# of connections to train: 100
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Reservoir computing for cost saving

Recurrent Neural Network

True Output vs RNN Prediction

Code by ChatGPT

Reservoir Computing

True Output vs Reservoir Computing Prediction

Value

1.0 4

0.8 4

0.6 4

0.4 4

0.2 4

0.0 4

T T T T T T T T
25 50 75 100 125 150 175 200
Time Steps

# of Input size: 1 (20 time steps)
# of hidden nodes: 50
# of output node: 1

# of connections to train: 2651

=== RNN Computational Costs ===
Training time: 3.83 seconds
Inference time: 0.2095 seconds
Memory used: 63.27 MB
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# of Input size: 1 (20 time steps)
# of nodes in reservoir: 100
# of readout nodes: 100

# of connections to train: 100

=== RC Computational Costs ===
Training time: 0.02 seconds
Inference time: 0.0015 seconds
Memory used: 5.57 MB
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From Reservoir Computing
To Physical Reservoir Computing
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‘Physical’ reservoir computing

A reservoir can be a physical system...

Reservoir Computing (RC) Physical Reservoir Computing (PRC)

—

Trained
connections

As long as the physical system has the following features:
« Have a short-term internal memory — fading memory
» Nonlinear transformation of the input data
* Given the same input, same output should be guaranteed

l‘ ll Soongsil University 11



Can water compute?

« Same drops: same ripples propagate (Same input — same output)
» Multiple ripples can interfere (Nonlinear transform)
* Ripples will fade away (Fading memory)
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Reservoir computing from a water bucket

Source: TU Berlin (Dr. Manish Yadav et al.)

Physical Intelligence: Alin a Bucket of Water

Supervisor: Dr. Manish Yadav; Participants: Filip Gerhard Landin, Yueyin Luo, Luis Emilio Zaldivar Hanke, Samuel

Introduction

The presented work demonstrates the potent 3 of reservoir comput ng as a
resource-ef cient alternat ve to tradit onal deep leaming modeis. By leveragng

a complex dynamical system as the computat onal core, it highlights the capa-
bility of reservoir comput ng to process and analyze dxa in innovat ve ways.

Reservoir Computer

Reservoir comput ng employs a fxed, randomly Interconnected network—the
reservoir—o transform input signals into a higher-dimensional space. This
transformat on facilitates the applicat on of straight orward kinear methods.
Renowned for Its prof ciency with t me-series data and dynamic systems, reser-
voir comput ng demands minimal training. The diagram befow Illustrates this
computat onal framework.

Input layer Reservor Network (A) Output Layer
/-‘ + < o
» .
o <- L& 4«*‘\
k&

r(t)l S
t

Time increment: Fy. s = (1—0)F 4+ Q- O(W e Fi + Wig - X(0),
Training: w; - mnkW ..r(1) — y(tk
Predict on: y(t) = W ..r(t)
W, s ER*%r ER™ ' x(t) ER™ ' W, ER* ™, W ,, ER™
* Explainable model
* Reservoir: Fixed (randomly generated) graph
« Ef clent training Only the readout weights W o, need to be trained

Autonomous Reservoir Comput ng

z(t)
taar

* Autoregressive model: Predict ons based on learnt weights and previous
states (self-feeding loop)

* Temporal Informat on Storage: Reservoir can retain informat on from past
Inputs, enabling the network to ut lize memory capabilit es for
t me-dependent predict ons or dynamic temporal pat ern recognit on

Conference XXX
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Gorzalnik, Mahdi Ghorbaniaghooyeh,Tatiana Vasilyeva

Technical University Berdin

Physical Reservoir - Sem

Thefgnbeiummaeswexpermldsetmforptwemswmgusmqa
Mcdmcmmweﬂh&eb;acmmdwa« Input sig-
nals are ¢ mechanical perturbat ons, which ger waves onthe
water's surface. Thesewavesnmevxlmccmiex pat erns, act ng as the com-
putat onal medium. An image of the wave pat ems is then analyzed to extract
the systens response to the inputs.

Solving XOR with a Physical Reservoir

* Classica non-linear binary classif cat on problem

* Can be soived linearty in a higher dimensional space

* Solut or: Map inputs into higher dimensional feature space by using the
inherent non-linearity of the waters dynamics

Input:(1,1), class: 1 Input(0,0), class: 1 Inputd1,0) class: 0 Inprat(0,1) class: 0
Procedure:

1. Encode XOR Input: Signals trigger the motors = generat on of waves in the
physical reservoir

2. Recording Image Data: Take a picture of the water surface shortly af er motor
actvat on

3. Image Preprocessing: Cropping the edges - edge detect on with sobel flter
(taking magnitude piceiwise) - NON-Max-suppression — resizing

4. Model: CNN with linear act vat on funct ons (linear model) = predict ons

Cyber-Physical Systems

n Mecharicai Engeraerng TU Bertn

Solving XOR with a Physical Reservoir - Results

We used a model comprising one convolut onal layer with 32 fiters (3x 3), aMax-
Pooling-Layer (2x 2), a Fully Connected Neural Network with 64 neurons and one
ouput neuron. In the hedden layers we only used linear act vat on funct ons,

Pamng anc Vedation s
1 — Mg
4 — vt i

e Wy b o)
e e o

e Ve ety S

% 23 %8 1% me uy na us

©s 13 1 5 me us W s

Model BCE-Loss Accuracy

Linear Mode! 05491 B8257%
NonLinear Model (RelU)  0.3007 90.04%

Music Generation with a Reservoir Network

We used the "Childrer's Song Dataset” for training the modet and introduced fol-
lowing simplifying constraints:

* Only seven dist nct musical notes (C-scale)
* In case of chords only the lowest note is used
* No rest and equal durat ons

The reservoir consists of a Erdds-Renyi graph Wae € {0 )}V*N of N nodes and
connect on probability & An input vector x € C" of length n will frst be trans-
formed into a matrix Win € {Q 1}N* ", where the I-th column of Wi, Is @ one-hot
encoding of the i-th note in the sequence X, Then, the state of the reservoir at
tme-step (t+ 1), Re.y, IS computed. For predict ons a Feed-Forward Neural Net-
work was applied. The moded leams a distribut on of the next note to play gven
Rae1 Le. on the given musical sequence, To generate music we feed back the pre-
dict ons iterat vely to compute the next states.

Music Generation with a Physical Reservoir

* Time series need to be converted into signals for motor act vat on

* Memory-capacity of the fading waves allows for predict ons of future states
based on previous inputs

* Pretrained linear model predicts based on reservoir inputs

» Predict ons need to be converted to signals = motor act vat ons = new
reservoir state

manshyadiv@t-berinde
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Towards practical applications

» Electronic devices are generally preferred for their versatile applicability
« Making an electronic reservoir requires complicated circuits and connections

« Simple and programmable method to utilize electronic devices as physical reservoir

ls‘l fi Soongsil University 14



From Delay-coupled RC to Dynamic devices RC

Architecture

Building blocks

Ref: X. Liang, J. Tang, Y. Zhong, B. Gao, H. Qian, H. Wu, Physical reservoir computing with
emerging electronics. Nature Electronics 7, 193—206 (2024).

Key features

Implementation example

a
Delay-coupled RC

e

®
@
@

Input channel
Output weight

Pre-processing
(time-multiplexing)

Physical node
Virtual node

Delay line

« Time-multiplexing to generate states
- Delayed feedback to enhance MC

Pros:
+ Requires only one or few physical
nodes

Cons:
+ Relies on the use of a delay line
» States generated in series

Ma sk

Input—b T circuit
DeLa\red feedback |

Nonlmear

States
|n series

b

Dynamic devices RC

l

-

o[

=[]0l

Input channel
Output weight

Pre-processing

Parallel dynamic
devices array

+ Use intrinsic memory of dynamic
devices

«» Device-to-device variation enhances
state richness

Pros:
« Simple implementation

Cons:
« Relatively weak MC

Input

Dynamic memristor

» Delay-coupled RC requires signal masking and delayed feedback in a

node, which is usually a circuit module
« State richness is achieved by time multiplexing

» Dynamic devices RC utilizes nonlinearity and fading memory

characteristics of a single device and utilize multiple devices in parallel
« State richness is achieved by device-to-device variation

l‘ ll Soongsil University

States in parallel
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Case study: Physical Reservoir Computing
Using Tellurium Photonic Synapses

Reference: Hyerin Jo#, Jiseong Jang#, Hyeon Jung Park#, Huigu Lee, Sung Jin An, Jin Pyo Hong*, Mun Seok Jeong*, and Hongseok Oh*,
"Physical reservoir computing using tellurium-based gate-tunable artificial photonic synapses", ACS Nano, 18, 44 (2024): 30761-73.
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Te thin film photonic synapse

a Collaboration with: Co-first authors:
2 o N Ms. Hyerin Jo
il %W > Prof. Munseok Jeong _
- (Hanyang Univ.) Mr. Jiseong Jang

. Dr. Hyeon Jung Park
Prof. Jin-Pyo Hong

(Hanyang Univ.)

>3 b
21> > D>

C. Zhao, C. Tan, D.-H. Lien, X. Song, M. Amani, M.
Hettick, H. Y. Y. Nyein, Z. Yuan, L. Li, M. C. Scott,
A. Javey, Evaporated tellurium thin films for p-type
field-effect transistors and circuits. Nat.
Nanotechnol. 15, 53-58 (2020).

I—v<

« Te thin film is now receiving a lot of interest as a candidate for high
performance p-type materials

» Potential for synaptic CMOS system

» Multi-colored light applications (Small bandgap)

‘s ll Soongsil University
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Te thin film photonic synapse

Light lllumination

Te sputtering MXene coating

- 7é'

| thin film
SiO, (Gate Insulator)

Te thin film device with back-gate structure

‘s‘l | Soongsil University
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Te TFT as p-type TFT

Transfer curves Output curves

' ' 0
—\/d = -1V V.=0V
— —\d =-20V -
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10 -40 -30 -20 -10 O 10 20 4x10 -20 -15 =10 -5 0
Gate Bias (V) Drain Bias (V)
Light-pulse responses
100 ——UvaTonm  Te thin film transistor is a p-type transistor
< 8o} —— Green 500nm - Strong response to UV and blue lights
= = |R 850nm
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= 40t
0
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Small MNIST classification task

o5 T N

Horizontal slicing
Seq.

Small (8 x 8) MNIST digit 7
1
1
1
1
DIFTY l.'! |
1
1
= 1
(1796 images) ‘\\

Seq.

Seq.

Seq.

Seq.

Seq.

Seq.

Seq.

N . N N NN NN NN NN NN NN NS NN SN NN NN SN S SN NS NS SN S

o1 N
ol W
o3 N I
ol VI
05 .
oc N N
o7 [N [
os [ [

Readout
16 voltage-pulse sequences 16 current responses vector
zeq. Z; \ “ “ n “ Seq.01\/\/$\\$
eq.
. q o ,, nn — Sef1.02\/\/°"_\6
eq. ‘ Seq. 03 1
Seq. 04 “ Seq. 04 14 (0]
Seq. 05 — Seq. 05 ? ¢
’5_\ Seq. 06 ‘ Seq. 06 |° ¢
E e o8
P N ‘E Seq. 08 :
— eq.
] bo - S B
Squ . Seq. 11 :
: q. ” ‘ Seq. 12 0 ¢
eq. 1
Seq - — Seq. 13 o ¢
Se: . — Seq. 14 ¢ ¢ .
. ‘ Seq. 15 | | ]
Seq. 16 — Seq. 16§8-:8 uO . =
Time (a.u.) Time (s) °o

* No binarization: Used value as a LED intensity
« Final conductance values were used for learning

« # of connections for training: 64 (No RC) -> 16 (RC)

* In principle parallel computation is possible
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System Implementation

Action potential

(light pulse)
5‘9 Electrical - -
measurement § Z
I
I
« Takes image as an input and create SELEE Dl

corresponding voltage signal with user-
defined amplitudes and delays

» Records the current response with user-
defined drain and gate bias

* Repeat over entire “Small digit” dataset DUT
(1697 images from Scikit Learn)

ls II Soongsil University 21



System Implem

) Synapssu Vo
Connection Control Bo Time Display
SMUI (Drain)  USE Currant date 8 time Time elapsed for the current m

2024/01/21 16:31:01 00:00:10.69

SMUZ (Gate)

o

phi (xle-

Graph3 (x1e-0X

-0
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Results

-
o

e
-]

16-valued
readout

Accuracy

0.0

1.0

32-valued
readout

Accuracy

o
(X}

0.0

Model accuracy

e
o

e
kS

— Train

{ — Test

Train acc. 87.59%

g
o

o
kS

Test acc. 86.27%
0 100 200 300 400 500
Epoch
Model accuracy
— Train
— Test Train acc. 92.92%
Test acc. 92.76%
0 100 200 300 400 500
Epoch

Confusion Matrix

0.8

0.6

-0.4

-0.2

2 34567289
Predicted Digit

0 1

Confusion Matrix o

0

0.8

0.6

True Digit
9 8 7 6 5 4 3 2 1

-0.4

-0.2

234567889
Predicted Digit

0 1

- Sample #: 1796, 70% for training, 30% for validation
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Weight Distribution
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Temperature dependent PPC

Gate bias: OV Temperature 30°C
~10F " T T T T3 10 = ) oy = m oV =20V )
g A =460 nm :28(0; czé A =460 nm z_zoo\y o a VZ=0V M i
=0.8H 18.32 mW/cm? 70cc 4 T0.8HL 18.32 mW/cm? —Vg=20V - ® V=20V qe* ¢
5 100 °C S 4 o -
0.6 RS
(@)
304
N ]
©
£ 0.2
§ 0'0 T i L i L i L i L i L i L Draln blas 6V S I : L ]
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0.028 0.032 0.036

Time (s) Time (s) 1/KT (meV")

Temperature dependent PPC with decreasing time constant at elaborated
temperature

* The time constant can be tuned by the gate bias

« The energy related to trapping of photo-generated carriers are expected
to be 166 — 419 eV depending on the gate bias
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Temperature dependent PPC

Gate bias=0V Gate bias <0V Gate bias>0V

N T
- [ L —
O
A —
© Electron @ Hole = Recombination of electron-hole pair

— Trap states & Photon —— Excitation process —— Relaxation process )
* Negative bias attracts holes to the front channel.
They recombine with electrons in the trap sites.
» Positive bias pushes holes to the back channel, while the electrons are
attracted to the front channel, leading to the prolonged recombination.
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Prediction of the Solution for Non-Linear Equation

Random input u, Second-order Non-linear equation Solution y,,

/\/\/\/\/\[/\A/\/\/\/\/\A/\//\/\j » [ Yk = 0-4J’k—1 + 0-4}’k—1J’k—2 + 06u,§ + 0.1 ] »

‘ 4 V|rtual nodes
\
“ n_c>-* P —— '/;/////
g J

» Reservoir computing can be used to predict the solution of non-
linear equation
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Prediction of the Solution for Non-Linear Equation

Connection Control Box Data location and filename Time Display: Measurement
SMU1 (Drain)  USBO0:0=05E6::0x2450::04570654 NS TR Check Location: Di/Data
KEITHLEY INSTRUMENTS MODEL 2400, 04570654,1.7, 12b

Select folder Current date & time Time elapsed for the current measurment: RUN

Filename: nemamme . 2024/04/23 20:22:15 00:45:34.36 #BORT
SMIUZ (Gate)  USB0:0x05EG::0x2450::04564339::NSTR Check

KEITHLEY INSTRUMENTS, MODEL 2400,04584338,1,7, 12b ) Pa rameter Setup

SMU3 (Light)  USBD:0<05E6::0x2450: 04603670 NS TR Check <Measurement settings> ) Drain {Memristor/Mermtransistor
KEITHLEY INSTRUMENTS, MODEL 2400,04603670.1.7. 12b Auto Zera 0 0:OFF/1: QN () Gate {Synaptic transistor)
Yoltage source range 20 v © LED (Photonic synapse)
Refrash — L
Current sensing range 1E-f A Drain Bias -l
System log Trigger delay 00 s  GateBias o T
_ =
Source delay 00 5 PulseVoltage o v I3 0 L
L &
[2024-04-23 16:40:03) Measurement starl MPLC 1 rumper  UnitPulsewish 200 ms
| . .
2 P easromen: NARME-2 Class Current compliance 1E-3 4 UnitDelay Width 200 ms
05] SMLI list: . Fiesponse
. Gate bias setup Encoding manager
< USEInslrumem( USB0: 005 p <Measurement settings> Equation Length 350 Device response
[2024-04-23 18:01:06] Measurement start! Auto Zera 0 0 OFF/1: ON "
[2024-04-23 19:32651) Measurement done! S Loadlequation o 2 o Cl & 100 120 140
[2024-04-23 1 44] Run Measurement: NARMA-2 Class Woltage source range 2y
[2024-04-23 18:38:44] SMU_st: c —. Calculate pulse seq, or 40
: urrent sensing range - %KK
<'II5BInstrument'{'USBO: 0% 05E 2450 . Tager delay 0] 5 Encoding Modulation o0 \\ M _e-08
[ ] - © Linear steps (O Custom steps \ T
00] Measurement done! Source delay 7DD 8 Vgs (start) oy -40 —da-8
07] Run Measurement: NARMA-Z Class Gate NPLC 0| omifien | M
35.‘ 3 .| ! . . — Vgs stop =20 & WWMN e R
. . Current compliance 100E-3 A — - i e
USE DSE0.005E8 DiztEDs oo : i Ve st 5 \ MWWMﬁ
< nstrument I =, " - T
[2024-04-23 19:36:08] Measurement star LD s S -6 \ ~ e R
[2024-04-23 1 19] Measurement done! <Measurement settings> = \\ " — B e e S
[2024-04-23 19:36:18] Run Measurement: MARMA-2 Class ©) Drain pulse T m A e ~le-07
Auto Zera 0 00 OFF/1: ON (0} R — et B
[2024-04-23 19:36:20] SMU list: e e
0205E6 . © Gate pulse & A e %
10 = S A wosog
<USBInstrument'("USB0: 0x05E MLz e e I Y || = 15 g 2 -2 Sh o -1.26-07
<'USBInstrurnent (' USB0:0:05EG: H : _ =
[2024-04-23 19:36:20] Measurement start Coment sensingrange  100E-3 & p iy gjag by g
[2024-04-23 20:21:54] Measurement done! i S -140 =1.de-07
Trigger delay 00 s Gate Bias oy O
Sowcedelay B0 by voltage 0 -160 ~1.6e-07
GateMPLC 1 mumber oy pyteg wigth 10000 ms . .
) S - -1,8e
Current compliance 100E-3 A Unit Delay Width 500 ms R d d
=200 - eCO r e - ~Ze-07
220 current 2207
SW Information
=240 =2, 4e-07
Synap3sU (40,1 January 2024) i il n il il i 20 140
Created by Prof, Hongseak Oh .
Department of Physics, Soongsil University (S5U), South Korea Tirme (=)

Email: hoh331@gmail. com
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Prediction of the Solution for Non-Linear Equation

X =l = Iy I~ L >0 k : step #

xp =0 if Iy =Ly <0 [ : device index
n : differential index
3.0x107° - 3.0x107° - : 3.0x107° -
" V=175V " V=175V " V=175V
V,=150V =1 V,=150V n=2 v,=150V n=3
V, =125V V, =125V V=125V
,;_2.0)(10_9_ v V=100V | ;'\2.0><10_9' v V=100V | ;2.0X10_9' v V=100V
8 8 v 8 -
o) o) n o) .
=] = =) n H
< 1.0x107°} vy © 1.0x107°} o . © 1.0x107°} = & - H
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"V, =175V "V, =175V " V,=175V v
V=150V _ . V=150V _ V=150V _ "
V,=125V n=4 . Vv, =125V n=5 Vv, =125V n=6
52.0x10°} Vy=10.0V = 52.0x10°} V,=10.0V ::' | 52.0x10°} V=100V
© © - ®© ..-
) s ) ) - . 3
2 -9L L] .'W =) 9L ';' L.'. Lo} J 21 X1 9L n = N
g 1.0x10 : ".v. . W <>u 1.0x10 e " " . c>vs .0x10 s .."v' .,
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Prediction of the Solution for Non-Linear Equation

3.5x%1 0_1 T T T T T T T T T T
Alpha 0.1, Dev 3, Diff 17, MSE: -32.71 dB Ground Truth
» —— Training
~3.0x107" | Prediction -
)
)
o 2.5x107"
)
2 A )
= 2.0x107" | -
1_5>C10—1 L 1 L 1 L 1 L 1 L 1 L
50 100 150 200 250 300 350
Step (#)
5 - -30.83 -30.83 -30.78 -30.64 -30.29 I26
“ e (k) = y ()17
NMSE = k 11Vt y

T Zk 1[Yt(k) - Yave]

n (# of physical nodes)
w

15 16 17 18 19
m (# of historical nodes)

« Accurate prediction of the solution is possible from this PRC approach
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Conclusion

Field-dependent Artificial Physical Reservoir
PPC Photonic Synapses Computing

» Reservoir computing is a new energy-saving framework for
learning nonlinear dynamical systems

» Physical reservoir computing replaces the software reservoir with
a physical one to achieve maximized cost saving

« Dynamic devices can be used as a physical reservoir — a new way
to implement physical reservoir computing with existing
electronics

‘s ll Soongsil University
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