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What is Reservoir Computing



Nonlinear dynamical systems
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Natural systems Social systems

Engineering systems Biological systems

Source: berkeleyearth.org

Source: www.macrotrends.net

S&P 500 historical chart

Code by ChatGPT Source: cardiorhythm.co.za

Cardiac rhythms



Recurrent Neural Network (RNN)
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Feed-Forward Network Recurrent Neural Network

• For static input

• Perceptrons are used once for each 

input

• For dynamic input

• Perceptrons are used repeatedly 

during the given input

• Output of nodes at ‘n-1’th series 

becomes input of ‘n’th series 



Disadvantages of RNN

5

• Vanishing or exploding gradient problem

• Slow and complex training procedure

Source: https://iq.opengenus.org/disadvantages-of-rnn/

Trained 

connection



Reservoir computing
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Ref: Lukoševičius, Mantas, and Herbert Jaeger. 
Computer Science Review 3, no. 3, 127–49.

Trained 

connection

Reservoir

Input Output

Readout 

nodes

• Reservoir: a set of randomly created, fixed recurrent neural network
• It is passively excited by the input signal and 

maintains nonlinear transformation of the input history in its state.

• The desired output signal is generated 

as a linear combination of the readout nodes of the reservoir 

driven by the input signal
• The linear combination is obtained by linear regression, 

using a teacher signal as a target



UAT for dynamical nonlinear systems
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Code by ChatGPT

=== RNN Computational Costs ===

Training time: 3.83 seconds

Inference time: 0.2095 seconds

Memory used: 63.27 MB

Input 

node 

(1)

Hidden nodes

(50)

Output

node

(1)

# of connections to train: 2651

𝑑𝑥 𝑡

𝑑𝑡
= 𝛽

𝑥(𝑡 − 𝜏)

1 + 𝑥 𝑡 − 𝜏 𝑛
− 𝛾𝑥(𝑡)

Mackey-Glass System



UAT for dynamical nonlinear systems
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Code by ChatGPT

=== RC Computational Costs ===

Training time: 0.02 seconds

Inference time: 0.0015 seconds

Memory used: 5.57 MB

Input 

node 

(1)

Output

node

(1)

# of readout nodes: 100

# of connections to train: 100

Nodes in the 

reservoir

(100)

Output 

(1)

𝑑𝑥 𝑡

𝑑𝑡
= 𝛽

𝑥(𝑡 − 𝜏)

1 + 𝑥 𝑡 − 𝜏 𝑛
− 𝛾𝑥(𝑡)

Mackey-Glass System



Reservoir computing for cost saving 
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Code by ChatGPT

=== RC Computational Costs ===

Training time: 0.02 seconds

Inference time: 0.0015 seconds

Memory used: 5.57 MB

=== RNN Computational Costs ===

Training time: 3.83 seconds

Inference time: 0.2095 seconds

Memory used: 63.27 MB

Recurrent Neural Network Reservoir Computing

# of Input size: 1 (20 time steps)

# of hidden nodes: 50

# of output node: 1

# of connections to train: 2651

# of Input size: 1 (20 time steps)

# of nodes in reservoir: 100

# of readout nodes: 100

# of connections to train: 100



10

From Reservoir Computing
To Physical Reservoir Computing



‘Physical’ reservoir computing
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Physical Reservoir Computing (PRC)Reservoir Computing (RC)

Trained 

connections

As long as the physical system has the following features:

• Have a short-term internal memory – fading memory

• Nonlinear transformation of the input data

• Given the same input, same output should be guaranteed

A reservoir can be a physical system...



Can water compute?
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• Same drops: same ripples propagate (Same input – same output)

• Multiple ripples can interfere (Nonlinear transform)

• Ripples will fade away (Fading memory)



Reservoir computing from a water bucket
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Source: TU Berlin (Dr. Manish Yadav et al.)



Towards practical applications
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• Electronic devices are generally preferred for their versatile applicability

• Making an electronic reservoir requires complicated circuits and connections

• Simple and programmable method to utilize electronic devices as physical reservoir



From Delay-coupled RC to Dynamic devices RC
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Ref:  X. Liang, J. Tang, Y. Zhong, B. Gao, H. Qian, H. Wu, Physical reservoir computing with 

emerging electronics. Nature Electronics 7, 193–206 (2024).

• Delay-coupled RC requires signal masking and delayed feedback in a 

node, which is usually a circuit module
• State richness is achieved by time multiplexing

• Dynamic devices RC utilizes nonlinearity and fading memory 

characteristics of a single device and utilize multiple devices in parallel
• State richness is achieved by device-to-device variation
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Case study: Physical Reservoir Computing 
Using Tellurium Photonic Synapses

Reference: Hyerin Jo#, Jiseong Jang#, Hyeon Jung Park#, Huigu Lee, Sung Jin An, Jin Pyo Hong*, Mun Seok Jeong*, and Hongseok Oh*, 

"Physical reservoir computing using tellurium-based gate-tunable artificial photonic synapses", ACS Nano, 18, 44 (2024): 30761–73. 



Te thin film photonic synapse
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C. Zhao, C. Tan, D.-H. Lien, X. Song, M. Amani, M. 

Hettick, H. Y. Y. Nyein, Z. Yuan, L. Li, M. C. Scott, 

A. Javey, Evaporated tellurium thin films for p-type 

field-effect transistors and circuits. Nat. 

Nanotechnol. 15, 53–58 (2020).

• Te thin film is now receiving a lot of interest as a candidate for high 

performance p-type materials

• Potential for synaptic CMOS system

• Multi-colored light applications (Small bandgap)
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Te thin film photonic synapse
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• Te thin film device with back-gate structure



Te TFT as p-type TFT
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• Te thin film transistor is a p-type transistor

• Strong response to UV and blue lights

Transfer curves Output curves
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Horizontal slicing Vertical slicing

16 (32) × 10 = 160 (320) 

weights are 

trained and updated

Small (8 x 8) MNIST digit

(1796 images)

Small MNIST classification task
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• No binarization: Used value as a LED intensity

• Final conductance values were used for learning

• # of connections for training: 64 (No RC) -> 16 (RC)

• In principle parallel computation is possible



System Implementation
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Source Drain

Gate

Action potential

(light pulse)

Electrical 

measurement

• Takes image as an input and create 

corresponding voltage signal with user-

defined amplitudes and delays

• Records the current response with user-

defined drain and gate bias

• Repeat over entire “Small digit” dataset 

(1697 images from Scikit Learn)

DUT



System Implementation
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Results
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- Sample #: 1796, 70% for training, 30% for validation

16-valued 

readout

32-valued 

readout

Train acc. 92.92% 

Test acc. 92.76% 

Train acc. 87.59% 

Test acc. 86.27% 



Temperature dependent PPC
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• Temperature dependent PPC with decreasing time constant at elaborated 

temperature

• The time constant can be tuned by the gate bias

• The energy related to trapping of photo-generated carriers are expected 

to be 166 – 419 eV depending on the gate bias
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Temperature dependent PPC
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• Negative bias attracts holes to the front channel. 

They recombine with electrons in the trap sites.

• Positive bias pushes holes to the back channel, while the electrons are 

attracted to the front channel, leading to the prolonged recombination.



Prediction of the Solution for Non-Linear Equation
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𝑦𝑘 = 0.4𝑦𝑘−1 + 0.4𝑦𝑘−1𝑦𝑘−2 + 0.6𝑢𝑘
3 + 0.1

Second-order Non-linear equationRandom input 𝒖𝒌 Solution 𝒚𝒌

Prediction

Virtual nodes
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Large Vg

Small Vg

• Reservoir computing can be used to predict the solution of non-

linear equation



Prediction of the Solution for Non-Linear Equation
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Parameter setup
Input sequence (random numbers)

Recorded 

current

Encoded voltage input signal (To LED)



Prediction of the Solution for Non-Linear Equation
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Prediction of the Solution for Non-Linear Equation
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NMSE =
1
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2

• Accurate prediction of the solution is possible from this PRC approach
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Conclusion
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• Reservoir computing is a new energy-saving framework for 

learning nonlinear dynamical systems

• Physical reservoir computing replaces the software reservoir with 

a physical one to achieve maximized cost saving

• Dynamic devices can be used as a physical reservoir – a new way 

to implement physical reservoir computing with existing 

electronics
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